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We establish upper bounds for the spectral gap of the stochastic Ising model at
low temperature in an N×N box, with boundary conditions which are ‘‘plus’’
except for small regions at the corners which are either free or ‘‘minus.’’ The
spectral gap decreases exponentially in the size of the corner regions, when these
regions are of size at least of order log N. This means that removing as few as
O(log N) plus spins from the corners produces a spectral gap far smaller than
the order N −2 gap believed to hold under the all-plus boundary condition. Our
results are valid at all subcritical temperatures.
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1. INTRODUCTION AND MAIN THEOREM

Let L … Z2 and let g ¥ {−1, 0, 1}“L. Here “L={x ¥ Z20L : x is adjacent to
some site in L}. The Hamiltonian for the Ising model on L with boundary
condition g is

HL, g(s)=− C
OxyP: x, y ¥ L

sxsy− C
OxyP: x ¥ L, y ¥ “L

sxgy, s ¥ {−1, 1}L,

where the first sum is over unordered pairs of adjacent sites. Let m=mbL, g
denote the equilibrium measure when the inverse temperature is b:

mbL, g(s)=(ZbL, g)
−1 e −bHL, g(s),



where ZbL, g is the partition function. Let SL={−1, 1}L be the configura-
tion space, and let s=sL denote a generic configuration. (When conve-
nient we write ‘‘+’’ and ‘‘− ’’ in place of 1 and −1 for the two spins.)

We consider the time evolution of the dynamic version of the model
under Glauber dynamics. Let sx denote the configuration given by
sxy=−sy for y=x, sxy=sy for y ] x. The flip rate at a site x when the
configuration is s is denoted c(x, s) (notationally supressing its possible
dependence on L, g.) We assume that the flip rates are uniformly bounded:

0 < c −0 [ c(x, s) [ c0 for all x, s, L, g.

We also make the usual assumptions that the flip rates are attractive and
translation invariant, satisfy detailed balance and have finite range; see,
e.g., ref. 15 for full descriptions of these properties. The generator A=AbL, g
of the corresponding Markov process is given by

(Af)(s)=C
x ¥ L

c(x, s)(f(sx)−f(s)),

and the Dirichlet form D=Db
L, g by

D(f, g)=Of, AgPm,

so that

D(f, f)=− 1
2 C
x ¥ L

C
s ¥ SL

m(s)c(x, s)(f(sx)−f(s))2,

where m=mbL, g. The spectral gap D=D(L, g, b) for such dynamics, which is
the smallest positive eigenvalue of −AbL, g, has the following representation:

D(L, g, b)= inf
f ¥ L2(m)

−
D(f, f)
varm(f)

, (1.1)

where varm(f) denotes the variance of f. The gap D describes the rate of
exponential convergence in L2(mbL, g) to equilibrium, in the sense that for
S( · ) the semigroup generated by A and || · ||m the L2(m) norm, D is the
largest constant such that

>S(t) f− F f dm>
m

[ >f− F f dm>
m

e −Dt for all f ¥ L2(m) and t \ 0.
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We say that two configurations s, s − ¥ SL are adjacent if for some
x ¥ L we have sx ] s

−

x but sy=s
−

y for all y ] x. For S … SL define

“inS={s ¥ S : s is adjacent to some configuration in Sc}.

Considering only indicator functions we obtain

D(L, g, b) [ c0 |L| inf
D … SL

mbL, g(“inD)
mbL, g(D)(1−mbL, g(D))

(1.2)

Let L̃N=[−N, N]2 and LN=L̃N 5 Z2. Let lh and lv denote the hori-
zontal and vertical axes, respectively, and consider the boundary condition
gk, E given for k \ 0 and E ¥ {0, −1} by

gk, Ex =˛1, if d(x, lh) [ k or d(x, lv) [ k;

E, otherwise.
(1.3)

Here d( · , · ) denotes Euclidean distance. As a special case of results in ref. 13
we have that for b very large, for some C, l depending only on d, b and E,

D(LN, gdN, E, b) [ Ce −lN for all d [ 1
8 and N \ 1. (1.4)

Here we will generalize this as follows. Let bc denote the critical inverse
temperature of the Ising model on Z2.

Theorem 1.1. Let b > bc.

(i) For some C, K, l depending only on b, for all N \ 1 and k \ 1
satisfying N−k \K log N,

D(LN, gk, 0, b) [ Ce −l(N−k). (1.5)

(ii) For some C, K, l depending only on b, for all N \ 1 and k \ 1
satisfying min(k, N−k) \K log N,

D(LN, gk, −1, b) [ Ce −l min(k, N−k). (1.6)

By Theorem 1.2 below, the spectral gap changes by at most a constant
when a single boundary spin is changed; in particular this can be applied
in comparing k=1 to a completely free boundary. Thus Theorem 1.1(i)
essentially includes exponential decay of the gap under the free boundary
condition at low temperatures, a result obtained by Thomas. (20)
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Theorem 1.1 generalizes (1.4) to all d < 1 and b > bc, and shows that
the L2 rate of convergence to equilibrium in the stochastic Ising model can
be quite slow even when the boundary condition is overwhelmingly of
a single spin, and otherwise free. For the full ‘‘plus’’ boundary condition
(k=N) at subcritical temperatures, it is believed (7) that the spectral gap is
of order N −2; Martinelli (16) proved that for very low temperatures,

D(LN, +, b) \ exp(−l(d) N
1
2+d) for all d > 0. (1.7)

Presuming N −2 is the correct rate for the ‘‘plus’’ boundary condition,
Theorem 1.1(i) shows that removing as few as O(log N) plus spins from the
corners of the box dramatically shrinks the spectral gap.

For k % cN with 0 < c < 1, Theorem 1.1 shows that the spectral gap
decreases at least exponentially fast in N. Schonmann (19) showed that for
all g, all N and all b > 0, for some C=C(b),

D(LN, g, b) \
C
N

e −4bN,

so the gap can never decrease faster than exponentially in N.
Our proof of Theorem 1.1 will use the method suggested by (1.2): we

find an event D with “inD much smaller than D. This event D is a variant of
the event that none of the four strips of ‘‘+’’ spins in “LN is connected to
any of the other strips by a path of ‘‘+’’ spins.

It would be of interest to establish similar lower bounds to go with the
upper bounds of Theorem 1.1, but this would most likely entail solving the
difficult open problem of obtaining a good lower bound for the gap for full
‘‘plus’’ boundary conditions (k=N). With (1.7) now the best available
result and N −2 the conjectured actual decay rate, such a bound does not
appear obtainable at present. However, the following simple result enables
us to relate k=N to smaller values of k, and shows conditionally on the
validity of the conjectured N −2 rate that lower bounds complementing (1.5)
and (1.6) do hold.

Theorem 1.2. Let b > 0.

(i) There exists R=R(b) > 0 such that for all N, all g ¥ {−1, 0, 1}LN
and all x ¥ “LN, for g − satisfying g

−

y=gy for all y ] x in “LN,

D(LN, g −, b) [ RD(LN, g, b).
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(ii) For some C, l depending only on b, for all 1 [ k [N,

D(LN, gk, 0, b) \ Ce −l(N−k)D(LN, +, b),

D(LN, gk, −1, b) \ Ce −l min(k, N−k)D(LN, +, b),

Here ‘‘+’’ denotes the all-plus boundary condition.

2. PRELIMINARIES

Throughout the paper, c0, c1,... and E1, E2,... will be used to represent
constants which depend only on the temperature (or other parameters) of
the model. We use Ei for constants which should be viewed as ‘‘small.’’

Our proof will make use of the Fortuin–Kasteleyn random cluster
model, or briefly, the FK model (refs. 8–10; see also refs. 1 and 11) which is
a graphical representation of the Potts model. To discuss this, we need
some notation for bond configurations. By a bond we mean an unordered
pair OxyP of adjacent sites in Z2. When convenient we view bonds as being
open line segments in the plane; this should be clear from the context.
Define the sets of bonds

B(L)={OxyP: x, y ¥ L}, Ba(L)={OxyP: x ¥ L or y ¥ L}.

For general A … R2, we write B(A) for B(A 5 Z2). Let WL={0, 1}Ba(L).
A bond configuration is an element w ¥ WL; when convenient we alterna-
tively view w as a subset of Ba(L) or as a subgraph of (La, Ba(L)). Bonds e
with we=1 are open in w; those with we=0 are closed. Let C(w) denote
the number of open clusters in w which do not intersect “L. For p ¥ [0, 1]
and q > 0, the FK model Pp, q

L, w on (La, Ba(L)) with parameters (p, q) and
wired boundary condition is defined by the weights

W(w)=p |w|(1−p) |Ba(L)|− |w|qC(w) (2.1)

Here |w| means the number of open bonds in w. More generally, given
r ¥ {0, 1}Ba(L)c we define (wr) to be the bond configuration on the full
lattice which coincides with w on Ba(L) and with r on Ba(L)c. Let C(w | r)
be the number of open clusters of (wr) which intersect L. The FK model
Pp, q
L, r with bond boundary condition r is given by the weights in (2.1) with

C(w) replaced by C(w | r). Alternately, given g ¥ {−1, 0, 1}“L define

V(L, g)={w ¥ {0, 1}Ba(L) : gx=gy for every x, y ¥ “L for which xY y in w,

we=0 for all e ¥ {OxyP: x ¥ L, y ¥ “L, gy=0}}. (2.2)
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Here xY y means there is a path of open bonds connecting x to y. The
FK model Pp, q

L, g with site boundary condition g is given by the weights in
(2.1), multiplied by dV(L, g)(w). Taking gx=0 for all x gives the FK model
with free boundary condition; we denote it Pp, q

L, f. For a summary of basic
properties of the FK model, see ref. 11. In particular, since we are in two
dimensions, for p ]`q/(1+`q) there is a unique translation-invariant
infinite-volume FK measure on B(Z2), which can be obtained as the limit
of Pp, q

L, w as L q Z2; we denote this measure Pp, q. For q \ 1, the FK model
has the FKG property. For

a(p, q)=
p

p+q(1−p)

and e ¥B(Z2), we have

Pp, q(we=1 | wb, b ] e) \ a(p, q) for every (wb, b ] e).

Changing a single bond in the boundary condition changes the value of
C(w | r) by at most 1. It follows easily that for boundary conditions r, r −

differing at only one bond, we have

Pp, q
L, r [ qPp, q

L, rŒ. (2.3)

As shown in ref. 6, for b given by p=1−e −b, a configuration of the
Ising model on L with boundary condition g at inverse temperature b can
be obtained from a configuration w of the FK model at (p, 2) with site
boundary condition g, by choosing a label for each cluster of w indepen-
dently and uniformly from {−1, 1}; this cluster-labeling construction yields
a joint site-bond configuration for which the sites are an Ising model and
the bonds are an FK model. When the parameters are related in this way,
we call the Ising and FK models corresponding. Alternately, if one selects
an Ising configuration s and does independent percolation at density p on
the set of bonds

{OxyP ¥Ba(L) : sx=sy},

the resulting bond configuration is a realization of the corresponding FK
model. We call this the percolation construction of the FK model. From
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Onsager’s exact solution of the Ising model (see ref. 18) and basic proper-
ties of the FK model (see ref. 11) the critical point bc of the Ising model
and the percolation critical point pc for the FK model with q=2 are given
by

1−e −bc=pc=
`2

1+`2
. (2.4)

The dual lattice (Z2)* is Z2 shifted by (12 ,
1
2); sites and bonds of this

lattice are called dual sites and dual bonds. x* denotes x+(12 ,
1
2). When nec-

essary for clarity, bonds of Z2 are called regular bonds. To each regular
bond e there is associated a unique dual bond e* which is its perpendicular
bisector. For D …B(Z2) we write D* for {e*: e ¥D}. For L … (Z2)*, “L is
defined as for L … Z2, but using adjacency in the dual lattice. The dual
bond e* is defined to be open precisely when e is closed, so that for each
bond configuration w on Z2, there is unique dual configuration w* on
(Z2)*. For p ¥ [0, 1] the value p* dual to p at level q is given by

p
q(1−p)

=
1−p*
p*

.

If the regular bonds are distributed as the infinite-volume FK model at
(p, q) on Z2 with wired boundary condition, then the dual bonds form the
infinite-volume FK model at (p*, q) on (Z2)* with free boundary condition
(see ref. 11.)

An Ising configuration s ¥ SL determines a set of contours, each
consisting of dual bonds e* ¥Ba(L)* for which the corresponding regular
bond e=OxyP has sx ] sy. In the joint Ising/FK configuration, therefore,
contours consist entirely of open dual bonds.

Given sets F … L and a site configuration s ¥ SL, we write sF for
{sx: x ¥ F} and let FF denote the s-algebra generated by sF. Similarly for
D …Ba(L) and a bond configuration w ¥ WL, we write wD for {we: e ¥D}
and let GD denote the s-algebra generated by wD.

An infinite-volume FK model Pp, q (or other bond percolation model)
is said to have the weak mixing property if there exist C, l such that, given
finite sets F … L and any two bond boundary conditions r1 and r2 on
Ba(L)c, we have

Var(Pp, q
L, r1(wB(F) ¥ · ), Pp, q

L, r2(wB(F) ¥ · )) [ C C
x ¥ F, y ¨ L

e −l |y−x|,
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Loosely this says that the maximum influence, on a fixed region, of the
boundary condition decays exponentially to 0 as the boundary recedes to
infinity. Equivalently, for all events A ¥ GLc and B ¥ GF,

|Pp, q(B | A)−Pp, q(B)| [ C C
x ¥ F, y ¨ L

e −l |y−x|. (2.5)

In contrast, Pp, q is said to have the ratio weak mixing property if there
exist C, l such that, given finite sets F … L and any two bond boundary
conditions r1 and r2 on Ba(L)c, we have for all events A ¥ GLc and B ¥ GF,

: Pp, q(A 5 B)
Pp, q(A) Pp, q(B)

−1 : [ C C
x ¥ F, y ¨ L

e −l |y−x|, (2.6)

whenever the right side of this inequality is at most 1. Note that (2.6) is
much stronger than (2.5) for A, B for which the probabilities on the left
side of (2.5) are much smaller than the right side of (2.5). Weak mixing for
the Ising model has a variety of useful consequences, particularly in two
dimensions; see ref. 17. It was shown in ref. 3 that for the FK model in two
dimensions, exponential decay of either the connectivity (in infinite volume,
with wired boundary) or the dual connectivity (in infinite volume, with
free boundary) implies ratio weak mixing. In particular, for q=2 and
p > pc(2), exponential decay of dual connectivity follows from the known
properties (see ref. 18) of Gibbs uniqueness and exponential decay of cor-
relations for the Ising model at inverse temperature b* < bc(2) corre-
sponding to p* < pc(2). Thus we have the following.

Lemma 2.1. Suppose p > pc(2). Then the FK model Pp, 2 on B(Z2)
has the ratio weak mixing property.

The following is an immediate consequence of the definition of ratio
weak mixing.

Lemma 2.2 (ref. 5). Suppose that the FK model Pp, q has the ratio
weak mixing property. There exists a constant c1 as follows. Suppose r > 3
and D, E …B(Z2) with diam(E) [ r and d(D, E) \ c1log r. Then for all
A ¥ GD and B ¥ GE, we have

1
2P

p, 2(A) Pp, 2(B) [ Pp, 2(A 5 B) [ 2Pp, 2(A) Pp, 2(B).
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We write yYg z for the event that y is connected to z by a path of
open dual bonds. For q \ 1, Pp, q has the FKG property (see ref. 11), so
− log Pp, q(0*Yg x*) is a subadditive function of x, and therefore the limit

y(x)= lim
nQ.

−
1
n
log Pp, q(0*Yg (nx)*), (2.7)

exists for x ¥Q2, provided we take the limit through values of n for which
nx ¥ Z2. This definition extends to R2 by continuity (see ref. 2); the result-
ing y is a norm on R2, when the dual connectivity decays exponentially (i.e.,
y(x) is positive for all x ] 0, or equivalently by lattice symmetry, y(x) is
positive for some x ] 0; we abbreviate this by saying y is positive.) By
standard subadditivity results,

Pp, q(0*Yg x*) [ e − y(x) for all x. (2.8)

In the opposite direction, it is known (5) that if y is positive (so ratio weak
mixing holds), then for some E1 and c2,

Pp, q(0*Yg x*) \ E1 |x| −c2 e − y(x) for all x ] 0. (2.9)

It follows from the fact that the surface tension y is a norm on R2 with axis
symmetry that, letting ei denote the ith unit coordinate vector, we have

1

`2
y(e1) [

y(x)
|x|

[`2 y(e1) for all x ] 0. (2.10)

A weakness of Lemma 2.2 is that the locations D, E of the two events
must be deterministic. The next lemma from ref. 4 applies only to a limited
class of events but allows the locations to be partially random. For
C …D …B(Z2) we say an event A … {0, 1}D occurs on C (or on C*) in
w ¥ {0, 1}D if w − ¥ A for every w − ¥ {0, 1}D satisfying w −e=we for all e ¥ C.
For a possibly random set F(w) we say A occurs only on F (or equiva-
lently, on F*) if w ¥ A implies A occurs on F(w) in w. We say events A and
B occur at separation r in w if there exist C, E …D with d(C, E) \ r such
that A occurs on C and B occurs on E in w. Let A pr B denote the event
that A and B occur at separation r. Let D r={e ¥B(Z2) : d(e, D) [ r}.

For x a (regular or dual) site, we write Cx=Cx(w) for the (regular or
dual) cluster of x in the bond configuration w.

Lemma 2.3 (ref. 4). Let Pp, q be an FK model on B(Z2), with y
positive and q \ 1, satisfying the ratio weak mixing property. There exist
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constants ci, Ei as follows. Let D …B(Z2), x ¥ (Z2)* and r > c3 log |D|, and
let A, B be events such that A occurs only on Cx and B ¥ GD. Then

Pp, q(A pr B) [ (1+c4e − E2r) Pp, q(A) Pp, q(B). (2.11)

Let xy denote the line through x and y. Let

H+
a ={(x1, x2) ¥ R2 : x2 \ a}

and let Hxy denote the closed halfspace bounded by xy which is to the right
as one moves from x to y.

Lemma 2.4 (ref. 5). Let Pp, q be an FK model on B(Z2), with y
positive and q \ 1, satisfying the ratio weak mixing property. There exist
E3, c5 such that for all x ] y ¥ R2 and all dual sites u, v ¥Hxy,

P(uYg v via a path in Hxy) \
E3

|v−u|c5
e − y(v−u).

For the y of (2.7), with q=2, the next lemma is an easy consequence
of the sharp triangle inequality satisfied by y (see ref. 14), which is obtained
from the exact solution of the Ising model on Z2. We will not use this
method here, however, to help make it apparent that our results are not
specific to the Ising model.

For u ¥ R2 let D+
u and D −

u denote the diagonal lines through u and
u+(1, 1) and through u and u+(1, −1), respectively. Let T1

N, k denote the
triangle with vertices (−k, −N), (k, −N) and (0, −(N−k)). Note the
base of T1

N, k is in the bottom side of LN and the other two sides are parallel
to the diagonals. Let T i

N, k, i=2, 3, 4, be the corresponding triangles
(obtained by rotation) with bases in the left, top and right sides of LN,
respectively.

Lemma 2.5. Suppose y is a norm on the plane which has axis
and diagonal symmetry. There exists a constant E4 as follows. Let 0 < k
< k+2m < N and x=(x1, −N− 1

2), y=(y1, −N− 1
2) with x1 [ −k, y1 \ k,

and z=(z1, z2) ¥H+
−N−12

0T1
N+1

2, k+2m+
1
2
. Then

y(z−x)+y(y−z) \ 2ky(e1)+E4m. (2.12)

Proof. If x1 [ −k−m or y1 \ k+m then y(y−x) \ y((2k+m) e1)
and (2.12) follows easily. Hence assume |x1 |, y1 ¥ [k, k+m). We may also
assume z1 \ 0.
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If z1 > y1 then from symmetry and convexity we have y(z−x) \
y(y−x) and y(y−z) \ y(me1/2), and (2.12) follows easily. Hence we
assume 0 [ z1 [ y1.

If z is above D+
x , let z − be the reflection of z across D+

x . Then
z − ¨ T1

N, k+2m and y(z −−x)=y(z−x), and it follows easily from symmetry
and convexity that y(y−z) \ y(y−z −). Thus it is sufficient to prove (2.12)
for z −. Hence we may assume z is on or below D+

x .
Now let u=(u1, u2) be the reflection of z across D −

y , and let
v=(v1, v2) be the point where xz intersects D −

y . By the above assumptions
on z and simple geometry, we have x1 [ u1 [ v1 and x2 [ u2 [ v2. Using
symmetry and convexity we therefore obtain

y(z−x)=y(z−v)+y(v−x) \ y(z−v)+y(u−x).

Since y(y−z)=y(y−u), it follows that

y(z−x)+y(y−z) \ y(z−v)+y(u−x)+y(y−u)

\ E4m+y(y−x),

as desired. L

For x, y ¥ (Z2)*, r > 0 and G … R2, we say there is an r-near dual con-
nection from x to y in G if for some u, v ¥ (Z2)* with d(u, v) [ r, there are
open dual paths from x to u and from y to v in G. Let N(x, y, r, G) denote
the event that such an r-near dual connection exists. The following result is
from ref. 5.

Lemma 2.6. Let Pp, q be an FK model on B(Z2), with q \ 1, for
which y is positive. There exist ci such that if |x| > 1 and r \ c6 log |x| then

Pp, q(N(0, x, r, R2)) [ e − y(x)+c7r.

The next lemma shows that a dual connection via a site for which the
triangle inequality is strict by an amount t > 0 has an excess cost propor-
tional to t.

Lemma 2.7. Let Pp, q be an FK model on B(Z2), with q \ 1, for
which y is positive. There exists c8 as follows. Suppose x, y, z ¥ (Z2)* and
t \ c8 log |y−x| satisfy |y−x| > 1 and

y(z−x)+y(y−z) \ y(y−x)+t.
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Then

Pp, q(xYg zYg y) [ e − y(y−x)−
1
20 t.

Proof. By Lemma 2.1, Pp, q has the ratio weak mixing property. Let
B=By(z, 3(y(y−x)+t)). Then provided c8 is large,

Pp, q(zYg Bc) [ c9(y(y−x)+t) e − y(y−x)−t [ 1
3 e

− y(y−x)−12 t. (2.13)

Thus we need only consider paths inside B. Let E5 > 0 to be specified and
consider w ¥ [xYg zYg y] 5N(x, y, E5t, B0By(z, t/5))c. For such w, there
exist z −, z' ¥ “(By(z, t/5) 5 (Z2)*) and paths xYg z −, yYg z' in B occuring
at separation E5t. Now

y(z −−x)+y(y−z') \ y(x−x)+y(y−z)−2 1 t
5
+y(e1)2 \ y(y−x)+

1
2
t,

so using Lemma 2.3, provided c8 is large,

Pp, q([xYg zYg y in B] 5N(x, y, E5t, B0By(z, t/5))c)

[ C
zŒ, zœ

2Pp, q(xYg z −) Pp, q(z'Y y)

[ 2 |“(By(z, t/5) 5 (Z2)*)|2 e − y(y−x)−t/2

[ 1
3 e

− y(y−x)−t/4. (2.14)

Next, provided E5 is small, an application of Lemma 2.2 gives

Pp, q([xYg zYg y in B] 5N(x, y, E5t, B0By(z, t/5)))

[ Pp, q([zYg By(z, t/10)c] 5N(x, y, E5t, B0By(z, t/5)))

[ 2Pp, q(zYg By(z, t/10)c) Pp, q(N(x, y, E5t, B0By(z, t/5)))

[ 2c10te −t/10 e − y(y−x)+c7E5t

[ 1
3 e

− y(y−x)−t/20. (2.15)

Together, (2.13), (2.14) and (2.15) complete the proof. L

3. PROOF OF THEOREM 1.1(i)

Let

La=L 2 “L, L … Z2.
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By a plus path in a site configuration s we mean a lattice path on which all
sites z have sz=1; minus paths are defined analogously. We write xY+ y
(xY− y) for the event that x is connected to y by a plus (minus) path. For
F … LaN, the cluster of F in a bond configuration w ¥ {0, 1}Ba(LN) is the set

C(F, w)={x ¥ L : in w, xY F in Ba(LN)}.

The plus cluster of F in a site configuration s ¥ SLN is the set

C+(F, s)={x ¥ L : in s, xY+ F in Ba(LN)}.

If sx=−1, then of course C+(x, s) is empty. The minus cluster C− (F, s) is
defined analogously.

For F … Z2 we define

Q(F)=0
x ¥ F

(x+[− 1
2 ,

1
2]

2).

Here x+[− 1
2 ,

1
2]

2 denotes the translation of [− 1
2 ,

1
2]

2 by x. For x ¥ R2 and
r > 0 we let B(x, r) and By(x, r) be the closed Euclidean ball and y-ball,
respectively, of radius r about x.

Fix b > bc, N \ 1 and K log N [ k [N, with K to be specified later.
Let p=1−e −b and j=(N−k)/4. We assume k and j are integers; the
modifications otherwise are trivial. Let PEN, k denote the joint site/bond
distribution obtained using the percolation construction of the FK model,
for which the site marginal distribution is mbLN, gk, E and the bond marginal
distribution is Pp, 2

LN, g
k, E. (To avoid ambiguous notation we write P −

N, k for
P −1
N, k.) We write (s, w) for a generic joint configuration in SLN ×{0, 1}Ba(LN).

We call (s, w) allowable (under gk, E) if PEN, k((s, w)) > 0. Define the strip of
sites C1 by C1=([−k, k]×{−N−1}) 5 Z2, and let Ci, i=2, 3, 4, be the
corresponding strips of sites, obtained by rotation, in the left, top and right
sides of “L̃N+1, respectively. (We will refer to the side corresponding to
subscript i as the ith side of L̃n, for general n.) For i=1, 2, 3 let Ci, i+1 be
the set of sites in “LN which are between Ci and Ci+1, in the obvious sense,
and let C4, 5=C4, 1=C0, 1 be the set of sites in “LN which are between C4
and C1. We also include the appropriate ‘‘corner site’’ as an element of
Ci, i+1, e.g., (−N−1, −N−1) ¥ C1, 2. Let

Cg
i, m={x ¥ (Z2)* 5 “L̃N+1

2
: x is a corner of Q(y) for some y ¥ Ci, m}.

Let Di be the event that there is no plus-path in s in Ba(LN) from Ci to
(T i

N, k+3j)
c, andD=44

i=1 Di. In the FKmodel, an event closely related toDi is

Ei={w ¥ {0, 1}Ba(LN) : Cg
i−1, i Y

g Cg
i, i+1 in T i

N+1
2, k+j+

1
2
}.
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We begin with a lower bound on the probability of Ei. The main point is
that restricting the path to lie in T i

N+1
2, k+j+

1
2
does not excessively alter the

probability of an open dual path from Cg
i−1, i to C

g
i, i+1.

Lemma 3.1. Let p > pc(2). There exist ci, Ei such that for N, k \ 1
with c11 log N [N−k [N, and Ei as above,

Pp, 2
LN, g

k, 0(Ei) \
E6

kc13
e −2ky(e1).

Proof. We may assume i=1 and k \ c12, with c12 to be specified. Let
m=c14 log k and n=Nc15 log kM, where c14 > c15 are to be specified and N · M
denotes the integer part. Provided c11 is large (depending on c14), we have
m [ j. Let x −=(−k− 1

2 , −N− 1
2), y

−=(k+1
2 , −N− 1

2), x=x −+(n, n), y=
y −+(−n, n) and let

E −1={w ¥ {0, 1}Ba(L) : xYg y in T1
N, k+2m 5H+

−N+n}.

By Lemma 2.4, for some E7,

Pp, 2(xYg y in H+
−N+n) \

E7

kc5
e −2ky(e1). (3.1)

Note this probability is for the infinite-volume limit. For each dual site
z ¥H+

−N+n0T
1
N, k+2m, let Fz denote the event that there exist open dual paths

x −Yg zYg y −. By (3.1),

Pp, 2(E −1) \
E7

kc5
e −2ky(e1)−Pp, 2 1 0

z ¥ (Z2)* 5H+
−N+n0T

1
N, k+2m

Fz 2. (3.2)

We wish to show that the second term on the right side of (3.2) is at most
half of the first term on the right side. Let G=(Z2)* 5 By(x, 3ky(e1)) 5
H+

−N+n0T
1
N, k+2m. We have

Pp, 2 1 0
z ¥ (Z2)* 5H+

−N+n0T
1
N, k+2m

Fz 2 [ Pp, 2(xYg By(x, 3ky(e1))c)+C
z ¥ G

Pp, 2(Fz).
(3.3)

By (2.8), provided c12 is large,

Pp, 2(xYg By(x, 3ky(e1))c) [ c16ke −3ky(e1) [
1
4
E7

kc5
e −2ky(e1). (3.4)
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Fix z ¥ G. We decompose the event Fz according to whether there is a
(c6 log 5k)-near dual connection from x to y in B(z, 3c17 log k)c, where c6 is
from Lemma 2.6 and c17 is to be specified. Let Yz=B(z, c17 log k) 5 (Z2)*.
Using (2.8) and Lemma 2.2, provided c17 and c12 are large we obtain

Pp, 2(Fz 5N(x, y, c6 log 5k, B(z, 2c17 log k)c))

[ Pp, 2([zYg “Yz] 5N(x, y, c6 log 5k, B(z, 2c17 log k)c))

[ 2Pp, 2(zYg “Yz) Pp, 2(N(x, y, c6 log 5k, B(z, 2c17 log k)c))

[ 2c18ke −
1
2 c17y(e1) log ke − y(y−x)+c7c6 log 5k

[ e −
1
4 c17y(e1) log k−2(k−n) y(e1), (3.5)

where c7 is from Lemma 2.6. Since |G| [ c19k2, provided we choose c17 large
enough (depending on c15) this gives

C
z ¥ G

Pp, 2(Fz 5N(x, y, c6 log 5k, B(z, 2c17 log k)c)) [
1
8
E7

kc5
e −2ky(e1). (3.6)

Next, let r=c6 log 5k and for z ¥ G let Y −z=B(z, 2c17 log k) 5 (Z2)*. We
have

Fz 5N(x, y, c6 log 5k, B(z, 2c17 log k)c)c … 0
u, v ¥ “YŒz

([xY u] pr [yY v]).
(3.7)

Now for u, v ¥ “Y −z,

y(u−x) \ y(z−x)− y(u−z) \ y(z−x)−3c17y(e1) log k

and similarly

y(y−v) \ y(y−z)−3c17y(e1) log k.

Hence provided c14 is large enough (depending on c17), we obtain using
Lemma 2.5 that

y(u−x)+y(y−v) \ 2(k−n) y(e1)+E4m−6c17y(e1) log k

\ 2(k−n) y(e1)+
E4

2
m.
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Combining this with (3.7), Lemma 2.3 and (2.8), provided c14 and c14/c15
are large we get

Pp, 2(Fz 5N(x, y, c6 log 5k, B(z, 2c17 log k)c)c)

[ C
u, v ¥ “YŒz

2Pp, 2(xYg u) Pp, 2(yYg v)

[ |“Y −z|
2 e −2(k−n) y(e1)− E4m/2

[ e −2ky(e1)− E4m/4, (3.8)

and then

C
z ¥ G

Pp, 2(Fz 5N(x, y, c6 log 5k, B(z, 2c17 log k)c)c)

[ c19k2e −2ky(e1)− E4m/4 [
1
8
E7

kc5
e −2ky(e1). (3.9)

Combining (3.2), (3.3), (3.6) and (3.9) we obtain

Pp, 2(E −1) \
1
2
E7

kc5
e −2ky(e1).

Then from Lemma 2.2, provided c15 is large,

Pp, 2
LN, g

k, 0(E −1) \
1
4
E7

kc5
e −2ky(e1).

Let cx and cy be dual paths of (minimal) length 2n from x to x − and from y
to y −, respectively, in T1

N, k+2m. Let E
'

1 denote the event that all dual bonds
in cx and cy are open. From the FKG inequality,

Pp, 2
LN, g

k, 0(E1) \ Pp, 2
LN, g

k, 0(E −1 5 E'1)

\ Pp, 2
LN, g

k, 0(E −1) P
p, 2
LN, g

k, 0(E'1)

\
1
4
E7

kc5
e −2ky(e1)a(p, 2)4n

and the lemma follows. L

For w ¥ Ei, “Q(C(Ci, w)) includes a unique open dual path ci(w) in
T i
N+1

2, k+j+
1
2
from Cg

i−1, i to C
g
i, i+1. This path is ‘‘closer to Ci’’ than any other
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open dual path in L̃N+1
2
from Cg

i−1, i to C
g
i, i+1. Further, for fixed n the event

[ci=n] depends only on the bond/dual bond configuration in the closed
region, which we denote I(n), between n and the side of “L̃N+1

2
to which n is

attached.
Let E=44

i=1 Ei, and suppose w ¥ E. Let

R(w)=L̃N+1
2
<0

4

i=1
I(ci(w)).

Note 0 ¥ R(w), and (under boundary condition gk, 0) all the dual bonds
forming “R(w) are open in w. The latter means that for fixed U, condi-
tionally on R(w)=U the configuration on B(U) is the FK model with free
boundary condition.

Let

YN=L̃N+1
2
<0

4

i=1
T i
N+1

2, k+j+
1
2
, Y −N={x ¥ YN : d(x, “YN) \ j}.

Let 0 < h < j to be specified, let w12=(k+2j, −N+h), let l12 be the verti-
cal line from w12 down to “L̃N at (k+2j, −N) and let q12 be the vertical
line from w12 up to the diagonal D −

0 at (k+2j, −k−2j). Using axis sym-
metry we obtain 7 more corresponding points wij and paths qij, lij, for
i=1, 2, 3, 4 and j=1, 2, with wij at distance h from side i of L̃N.

We want to show that with high probability, there are no open dual
paths starting from Y −N, or from near qij, which reach “YN. Let yijl1, yijl2 be
the endpoints of the dual bond which is dual to the lth bond of qij. Then

d(yijlm, “YN) \ h+
l

`2
for all i, j, l, m.

For x ¥ YN let

Gx=B (x, 12d(x, “YN)) 5 (Z2)*,

and define

YN=(Y −N 5 (Z2)*)

2 {yijlm: 1 [ i [ 4; j=1, 2; 1 [ l [N−h−k−2j; m=1, 2}.

SupposeU ‡ YN.Thend(Gx, “U) \ j/2 forallx ¥ Y −N.HenceusingLemma2.2,
provided K and h are large enough we get
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Pp, 2
LN, g

k, 0(xYg “Gx for some x ¥YN |w ¥ E, R(w)=U)

=Pp, 2
U 5 Z

2, f(xYg “Gx for some x ¥YN)

[ C
x ¥ YŒ

N
5 (Z2)*

Pp, 2
U 5 Z

2, f(xYg “Gx)+ C
i, j, l, m

Pp, 2
U 5 Z

2, f(yijlm Yg “Gyijlm)

[ C
x ¥ YŒ

N
5 (Z2)*

2Pp, 2(xYg “Gx)+ C
i, j, l, m

2Pp, 2(yijlm Yg “Gyijlm)

[ |Y −N 5 (Z2)*| e −jy(e1)/2+c20 C
l \ 1

(h+l) e −
1
4 y(e1)(h+l)

[ 1
2 . (3.10)

Let F denote the event that xYg “Gx for no x ¥YN, and all bonds in lij are
open for all i, j. If w ¥ E 5 F, then there is an open circuit in YN surround-
ing YN and for each i, a portion of this open circuit, together with li1 and
li2, forms an open path in T i

N, k+3j0T
i
N, k+j from a site adjacent to Ci−1, i to a

site adjacent to Ci, i+1. When this occurs (with w ¥ E 5 F), we call this
circuit together with all lij a blocking pattern. Note the blocking pattern is
contained in R(w). We have using (3.10) and the FKG inequality that for
all U ‡ YN,

Pp, 2
LN, g

k, 0(there is a blocking pattern in R(w) |w ¥ E, R(w)=U)

=Pp, 2
U 5 Z

2, f(there is a blocking pattern in U)

\ Pp, 2
U 5 Z

2, f(F)

\ 1
2 P

p, 2
U 5 Z

2, f(all bonds in lij are open for all i, j)

\ 1
2 a(p, 2)

8h. (3.11)

But considering the cluster-labeling construction of the joint Ising/FK
configuration, we see that if the configuration w ¥ E has a blocking pattern
in R(w) and all sites x in the blocking pattern have sx=−1 (which occurs
with probability 1/2, given such w), then s ¥ D. Thus from (3.11), the
FKG property and Lemma 3.1, for some E8,

mbLN, gk, 0(D) \
1
4
a(p, 2)8h Pp, 2

LN, g
k, 0(E) \

E8

k4c13
e −8ky(e1). (3.12)

We turn now to upper bounds on mbLN, gk, 0(“inD). Analogously to ci(w),
for s ¥ D, “Q(C+(Ci, s)) includes a unique open dual path c+i (s) in
T i
N+1

2, k+3j+
3
2
from Cg

i, i+1 to C
g
i−1, i, for each i. For fixed n the event [c+i =n]

depends only on the site configuration in I(n) 5 Z2.
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Suppose s ¥ “inD and sx ¨ D. Then for some i we have x ¥ “C+(Ci, s),
and either x ¥ “T i

N, k+3j+1 or there is an open dual circuit c in w outside
I(c+i (s)) which includes an edge of Q(x) and surrounds some site outside
T i
N, k+3j. We can choose c to be the outer boundary of Q(F) for some plus-

cluster F in s. In this case we call c an appendable circuit attachable at x.
According to Lemma 2.2, we can choose a constant c21 as follows. Let

Z i, i+1
N ={x ¥ R2 : d(x, Ci, i+1) [ c21 log N} and ZN=1 i Z

i, i+1
N . Let Vclosed be

the event that all bonds in {OxyP: y ¥ LN, x ¥ Ci, i+1 for some i} are closed.
Let Vopen be the event that all bonds in B(Z2)0Ba(LN) are open. (Note the
boundary condition gk, 0 conditions w on Vopen 5 Vclosed.) Then for all events
A ¥ GBa(LN)0B(ZN), we have

1
2 P

p, 2(A) [ Pp, 2(A | Vclosed) [ 2Pp, 2(A). (3.13)

We therefore call ZN the free-boundary influence region. In particular,
provided K is large (depending on c21), using the FKG inequality and
(3.13) we have

Pp, 2
LN, g

k, 0(Z i−1, i
N Yg Z i, i+1

N )=Pp, 2(Z i−1, i
N Yg Z i, i+1

N | Vopen 5 Vclosed)

[ Pp, 2(Z i−1, i
N Yg Z i, i+1

N | Vclosed)

[ 2Pp, 2(Z i−1, i
N Yg Z i, i+1

N )

[ c22(log N) e −2(k−c21 logN) y(e1)

[Nc23e −2ky(e1). (3.14)

Our main task is roughly to show, using Lemma 2.5, that the probability
for a connection Cg

i−1, i Y
g Cg

i, i+1 (specifically, part of c
+
i (s)) which does not

stay inside T i
N+1

2, k+3j+
3
2
is smaller than the right side of (3.12) by at least a

factor of e − E9 j, for some E9. We must decompose the event “inD into several
pieces according to the geometry of the sets C+(Ci, s) and C(Ci, w). The
most difficult case is that of leakage along the (free) boundary, in which
c+i (s) goes outside T

i
N+1

2, k+3j+
3
2
by way of ZN.

We define one more special dual path as follows. For F … LN let

Ĉ(F, w)={x ¥ LN0ZN : in w, xY F in Ba(LN)0B(ZN)}.

If (s, w) is allowable and s ¥ D, then “Q(Ĉ(Ci, w)) includes a unique open
dual path from Z i, i+1

N to Z i−1, i
N in Ba(LN)0B(ZN); we denote this path

ĉi(w). We have

ĉi(w) … I(ci(w)) … I(c+i (w)) … T i
N+1

2, k+3j+
3
2
.
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Let ui(w) and vi(w) be the starting and ending sites, respectively, of ĉi(w)
in Z i, i+1

N and Z i−1, i
N , respecitvely. Also define

W i, i+1
N ={x ¥ R2 : d(x, Ci, i+1) [ 2E10 j}, WN=0

i
W i, i+1

N ,

where E10 is to be specified. Provided K is large enough (depending on E10
and c21), we have Z

i, i+1
N …W i, i+1

N .

Case 1. Consider s ¥ “inD, and w with (s, w) allowable, for which
for some i there exist (in order) dual sites x, z, y ¥ ĉi(w) with

y(y−x) \ (2k−2c21 log N) y(e1), y(z−x)+y(y−z) \ (2k+4E10 j) y(e1).
(3.15)

We let A1 denote the set of (s, w) for which this occurs, let Ji denote the set
of all (x, y, z) ¥ (T i

N+1
2, k+3j+

3
2
5 (Z2)*)3 for which (3.15) holds, and let J −i

denote the set of all (x, y, z) ¥ Ji which also satisfy

y(y−x) \ (2k+2E10 j) y(e1).

As in (3.14), provided K is large enough (depending on E10 and c21), using
(3.13), (3.14) and Lemmas 2.2 and 2.7 we get

P0(A1) [ C
4

i=1
C

(x, y, z) ¥ Ji

Pp, 2
LN, g

k, 0(xYg zYg y in T i
N+1

2, k+3j+
3
2
0B(ZN);

Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+3j+
3
2
0B(ZN) for all l ] i)

[ C
4

i=1
C

(x, y, z) ¥ Ji

2Pp, 2(xYg zYg y in T i
N+1

2, k+3j+
3
2
0B(ZN);

Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+3j+
3
2
0B(ZN) for all l ] i)

[ C
4

i=1
C

(x, y, z) ¥ Ji

16Pp, 2(xYg zYg y in T i
N+1

2, k+3j+
3
2
0B(ZN))

·D
l ] i

Pp, 2(Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+3j+
3
2
0B(ZN))

[ 16 1 C
4

i=1
C

(x, y, z) ¥ JŒi

e − y(y−x)+C
4

i=1
C

(x, y, z) ¥ Ji0JŒi

e − y(y−x)−
1
10 E10 jy(e1)2

×(Nc23 e −2ky(e1))3

[ 16(4 |J −1| e
−(2k+2E10 j) y(e1)

+4 |J10J
−

1| e
−(2k+ 1

10 E10 j−2c21 logN) y(e1))(Nc23e −2ky(e1))3

[ e −(8k+
1
20 E10 j) y(e1). (3.16)
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Case 2. Let

R i
N=T i

N+1
2, k+3j+

3
2
5 (T i

N+1
2, k+j+

1
2
2WN).

We may think of R i
N as a ‘‘triangle with feet.’’ Let A2 denote the set of all

(s, w) ¥ “inD0A1 for which, for some i, there exists a dual site
z ¥ T i

N+1
2, k+3j+

3
2
0R i

N which is either in c+i (s) or in some appendable circuit
attachable at some x ¥ “C+(Ci, s). (In particular, we can choose z with
zYg “(B(z, E10 j) 5 (Z2)*) and B(z, 2E10 j) … L̃N+1.) Suppose (s, w) ¥ A2. We
claim that B(z, 2E10 j) 5 ĉi(w)=f. For all u ¥ Cg

i, i+1 and v ¥ Cg
i−1, i, by

Lemma 2.5 we have

y(z−u)+y(v−z) \ 2ky(e1)+E4 j.

Therefore for all u − ¥ Z i, i+1
N , v − ¥ Z i−1, i

N and z − ¥ B(z, 2E10 j), provided K is
large (depending on c21) and E10 is small (depending on E4),

y(z −−u −)+y(v −−z −) \ 2ky(e1)+
1
2 E4 j−2c21(log N) y(e1)−4E10 jy(e1)

\ (2k+4E10 j) y(e1).

Taking u −=u(w), v −=v(w) and comparing to (3.15) we see that since
(s, w) ¨ A1, we cannot have z − ¥ ĉi(w), proving our claim. Therefore as in
(3.16),

P0
N, k(A2) [ C

4

i=1
C

z ¥ (TiN+1
2
, k+3j+3

2
0RiN) 5 (Z

2)*
Pp, 2
LN, g

k, 0(zYg B(z, E10 j)c in B(z, E10 j+1),

Z i−1, i
N Yg Z i, i+1

N in T i
N+1

2, k+3j+
3
2
5 B(z, 2E10 j)c0B(ZN),

Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+3j+
3
2
0B(ZN) for all l ] i)

[ C
4

i=1
C

z ¥ (TiN+1
2
, k+3j+3

2
0RiN) 5 (Z

2)*
2Pp, 2(zYg B(z, E10 j)c in B(z, E10 j+1),

Z i−1, i
N Yg Z i, i+1

N in T i
N+1

2, k+3j+
3
2
5 B(z, 2E10 j)c0B(ZN),

Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+3j+
3
2
0B(ZN) for all l ] i)

[ 32 C
4

i=1
C

z ¥ (TiN+1
2
, k+3j+3

2
0RiN) 5 (Z

2)*
Pp, 2(zYg B(z, E10 j)c)

×D
4

l=1
Pp, 2(Z l−1, l

N Yg Z l, l+1
N )

[ c24 |T
1
N+1

2, k+3j+
3
2
5 (Z2)*| je −

1
2 E10 jy(e1)(Nc23 e −2ky(e1))4

[ e −(8k+
1
4 E10 j) y(e1). (3.17)
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Case 3. Let A3=“inD0(A1 2 A2), and suppose (s, w) ¥ A3. In this
case, plus spins are ‘‘leaking along the boundary,’’ in the following sense:
for some i, we have c+i (s) … R i

N, and either c+i (s) or some appendable
circuit c contains a dual site z ¥WN at one of the ‘‘toes’’ of R i

N, that is, in
the right or left side of T i

N+1
2, k+3j+

3
2
. Note that such a c necessarily has

c 5 T i
N+1

2, k+3j+
3
2
… R i

N, since (s, w) ¨ A2. We will assume z is in an append-
able circuit, attachable at some site x; the case of z ¥ c+i (s) is similar but
slightly simpler. From symmetry, we may also assume i=1 and z is in the
right side of T1

N+1
2, k+3j+

3
2
. We let A −3(x, z) denote the event that A3 occurs

with a specified choice of x, z, with i=1 and with z in an appendable
circuit, and let A −3=1x, z A

−

3(x, z). We define A'3(z) and A'3 analogously for
the case of z ¥ c+i (s).

The Ising model has the following ‘‘bounded energy’’ property:

mbLN, gk, 0(sy=1 | sw, w ] y) \
1

1+e8b
for all (sw, w ] y). (3.18)

Given a site x, let wx denote the configuration given by

wx
e=˛0, if x is an endpoint of e;

we, otherwise.

Note that if (s, w) is allowable, then so is (sx, wx). Let

B trunc
m =B 5 {(y1, y2) ¥ R2 : y1 < m} for m > 0, B … R2,

Ĉ1, 2=([k, k+2j)×{−N}) 5 Z2,

k1, 2={k+2j}×[−N, −N+2E10 j]

and

Ĉ− (Ĉ1, 2, sx)={y ¥ (LN)
trunc
k+2j : in sx, yY− Ĉ1, 2 in (L̃N)

trunc
k+2j}.

For J … Z2 define the boundary condition gk, 0, J by

gk, 0, Ju =˛1, if u ¥ J;

gk, 0u , otherwise.
(3.19)

Fix x, z and suppose (s, w) ¥ A −3(x, z). There is then a plus path in sx from
C1 to k1, 2 in R1

N, and Ĉ− (Ĉ1, 2, sx) is contained in the region between this
plus path and “(LN)

trunc
k+2j. Since

|“Ĉ− (Ĉ1, 2, sx) 5 k1, 2 | [ 2E10 j,
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using the ‘‘bounded energy’’ property (3.18) of the Ising model we have for
fixed J

P0
N, k((s, w) ¥ A −3(x, z), Ĉ− (Ĉ1, 2, sx)=J)

[ P0
N, k(Ĉ− (Ĉ1, 2, sx)=J, and in wx, k1, 2−

1
2 e1 Y

g Z4, 1
N

in Ba(LN0Ja)* 5 (R1
N)

trunc
k+2j−12

and Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+j+
1
2
0B(ZN) for l=2, 3, 4)

[ c2E10 j25 P0
N, k(Ĉ− (Ĉ1, 2, sx)=J, and in wx, k1, 2−

1
2 e1 Y

g Z4, 1
N

in Ba(LN0Ja)* 5 (R1
N)

trunc
k+2j−12

and Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+j+
1
2
0B(ZN) for l=2, 3, 4

and sy=1 for all y ¥ k1, 2 5 “J)

=c2E10 j25 P0
N, k(in w

x, k1, 2−
1
2 e1 Y

g Z4, 1
N in Ba(LN0Ja)* 5 (R1

N)
trunc
k+2j−12

and Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+j+
1
2
0B(ZN) for l=2, 3, 4 | Ĉ− (Ĉ1, 2, sx)=J

and sy=1 for all y ¥ k12 5 “J)

·P0
N, k(Ĉ− (Ĉ1, 2, sx)=J and sy=1 for all y ¥ k1, 2 5 “J).(3.20)

Here k1, 2−
1
2e1 means the translate of k1, 2 by − 1

2e1. When
Ĉ− (Ĉ1, 2, sx)=J, we have by definition sxy=1 for all y ¥ “J 5 (LN)

trunc
k+2j and

for all y ¥ Ĉ1, 20J, so from the Markov property of the Ising model, the
conditioning on the right side of (3.20) is equivalent to conditioning on
sxy=1 for all y ¥ Ja 2 Ĉ1, 2. Therefore the first probability on the right side
of (3.20) is

Pp, 2
LN0(Ja 2 Ĉ1, 2), g

k, 0, J(in wx, k1, 2−
1
2e1 Y

g Z4, 1
N in Ba(LN0(Ja 2 Ĉ1, 2))* 5 (R1

N)
trunc
k+2j−12

and Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+j+
1
2
0B(ZN) for l=2, 3, 4). (3.21)

Let

Ẑ1, 2
N ={x ¥ R2 : d(x, C1, 20Ĉ1, 2) [ c21 log N},

ẐN=Ẑ1, 2
N 2 Z2, 3

N 2 Z3, 4
N 2 Z4, 1

N ,

where c21 is from the definition of ZN. One effect of changing the measure
fromPp, 2

LN, g
k, 0 toPp, 2

LN0(Ja 2 Ĉ1, 2), g
k, 0, J is to shrink the free-boundary influence region
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from ZN to ẐN. More precisely, as in (3.16), we have using Lemma 2.2 that
(3.21) is at most

Pp, 2
LN0(Ja 2 Ĉ1, 2), g

k, 0, J(in wx, Z4, 1
N Yg (k1, 2−

1
2 e1) 2 Ẑ1, 2

N

in Ba(LN0(Ja 2 Ĉ1, 2))* 5 (R1
N)

trunc
k+2j−12

0B(ẐN) and

Z l−1, l
N Yg Z l, l+1

N in T l
N+1

2, k+j+
1
2
0B(ẐN) for l=2, 3, 4)

[ 16Pp, 2(in wx, Z4, 1
N Yg (k1, 2−

1
2 e1) 2 Ẑ1, 2

N

in Ba(LN0(Ja 2 Ĉ1, 2))* 5 (R1
N)

trunc
k+2j−12

0B(ẐN))

·D
4

l=2
Pp, 2(Z l−1, l

N Yg Z l, l+1
N in T l

N+1
2, k+j+

1
2
0B(ẐN)). (3.22)

To bound the first probability on the right side of (3.22), we observe that,
provided K is large, if u ¥ Ẑ4, 1

N and v ¥ (k1, 2−
1
2e1) 2 Ẑ1, 2

N , then

y(v−u) \ (2k+2j− 1
2−2c21 log N) y(e1) \ (2k+j) y(e1).

Further, we can replace wx with w at the expense of at most a constant
factor. Therefore as in (3.16), the right side of (3.22) is at most

c26N2e −(2k+j) y(e1)(Nc23 e −2ky(e1))3 [ e −(8k+
1
2 j) y(e1).

Plugging this into (3.20), provided E10 < 1/8 and K is large we obtain

P0
N, k(A

−

3) [ C
x, z, J

c2E10 j25 e −(8k+
1
2 j) y(e1)P0

N, k(Ĉ− (Ĉ1, 2, sx)=J)

[ e −(8k+
1
4 j) y(e1). (3.23)

A similar proof gives the same bound for P0
N, k(A

'

3). Combining this with
(3.16) and (3.17) gives

mbLN, gk, 0(“inD)=P0
N, k(A1 2 A2 2 A3) [ e −(8k+E11 j) y(e1). (3.24)

It follows easily from (3.14) that mbLN, gk, 0(D) [ 1/2. Combining this
with (3.12), (3.24) and (1.2) yields

D(LN, gk, 0, b) [ c27 =|LN | k4c13 e − E11 j [ e − E11 j/2=e − E11(N−k)/8,

which proves Theorem 1.1 for E=0.
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4. PROOF OF THEOREMS 1.1(ii) AND 1.2

The FK measure corresponding to the boundary condition gk, −1 is
given (cf. (2.2)) by

Pp, 2
LN, g

k, −1=Pp, 2
LN, w( · | V(LN, g

k, −1)),

where V(LN, gk, −1) is the event that there is no open dual path from Ci to
Cj, j+1 for any i ] j. Our calculations, however, are facilitated by using a
different conditioning, as follows. Consider bond configurations on
Ba(LN+1). Let UFK denote the event that for all i, all bonds OxyP with
x, y ¥ Ci are open, all bonds OxyP with x, y ¥ Ci, i+1 are open, and all other
bonds in Ba(LN+1)0Ba(LN) are closed. The FK model Pp, 2

LN+1, f( · | U
FK) cor-

responds to an Ising model mbLN+1, f( · | U
Ising), where U Ising is the event that

for all i, all sites in Ci have the same spin, and all sites in Ci, i+1 have the
same spin. Let L denote the event that for all i, all sites in Ci have spin 1
and all sites in Ci, i+1 have spin −1. Then

mbLN+1, f(sLN ¥ · | L)=mLN, gk, −1.

The measure P0
N+1, k( · |w ¥ UFK)=P0

N+1, k( · | s ¥ U Ising) gives the joint
construction, coupling Pp, 2

LN+1, k, f( · | U
FK) and mbLN+1, f( · | U

Ising).
For s ¥ L, let

J={(i, j): 1 [ i, j [ 4, i < j},

AN(s)={(i, j) ¥J : Ci Y
+
Cj in Ba(LN)}.

As motivation, note we expect that, roughly,

mbLN+1, f(AN=J | L) % 1 if 2ky(e1) > (N−k) y(e1+e2),

mbLN+1, f(AN=f | L) % 1 if 2ky(e1) < (N−k) y(e1+e2).
(4.1)

In the case 2ky(e1) \ (N−k) y(e1+e2), we will bound the spectral gap
using in (1.2) the same event D as in Section 3, but in the opposite case we
replace it with a different event D̂=44

i=1 D̂i, i+1. Here D̂1, 2 is the event that
there is no minus-path in s in Ba(LN) from C1, 2 to (S1, 2

N, k/4)
c, where S1, 2

N, m is
the square [m, N+1]×[−N−1, −m], and D̂i, i+1, S

i, i+1
N, m are the corre-

sponding event and square obtained by rotation, for i=2, 3, 4.
Suppose first that 2ky(e1) \ (N−k) y(e1+e2). Let x1, 1=(−k− 1

2 ,
−N− 1

2) and x1, 2=(k+1
2 , −N− 1

2). These dual sites are approximately at
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the ends of C1. We define corresponding sites xij for i=2, 3, 4 and j=1, 2.
In place of the event Ei of Lemma 3.1, we will use

Êi={w: x1, 1 Yg x1, 2 in T i
N+1

2, k+j+
1
2
}.

Lemma 3.1 and its proof remain valid for Êi in place of Ei, and the proof
of the lower bound (3.12) for mbLN, gk, 0(D) goes through with minimal
changes to give

mbLN+1, f(D 5 L | U Ising) \
E12

kc28
e −8ky(e1). (4.2)

The proof of (3.24) also goes through with minimal changes; in fact Case 3
can be made simpler using the fact that the boundary regions Ci, i+1 are
each wired. (We will not do so here, since it is unnecessary.) The result is
that

mbLN+1, f(“inD 5 L | U Ising) [ e −(8k+E13 j) y(e1). (4.3)

Combining (4.2) and (4.3) gives

mbLN, gk, −1(“inD)
mbLN, gk, −1(D)

=
mbLN+1, f(“inD | L)
mbLN+1, f(D | L)

=
mbLN+1, f(“inD 5 L | U Ising)
mbLN+1, f(D 5 L | U Ising)

[
E12

kc28
e − E13 jy(e1). (4.4)

In Section 3 we easily obtained the lower bound mbLN, gk, 0(D
c) \ 1/2 to

complete the proof. Here the situation is a little more complex. A lower
bound of the form

mbLN+1, f(D
c 5 L | U Ising)

mbLN+1, f(D 5 L | U Ising)
\ h (4.5)

for some h is equivalent to the statement

mbLN, gk, −1(D
c)=mbLN+1, f(D

c | L) \
h

1+h
. (4.6)
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Hence we consider bounds for the numerator and denominator of (4.5).
Let Fi, i+1 denote the event that xi, 2 Yg xi+1, 1 via a path in S i, i+1

N, k/4, and
F=44

i=1 Fi, i+1. We have

mbLN+1, f(D
c 5 L | U Ising) \ mbLN+1, f(D̂ 5 L | U Ising)

\ Pp, 2
LN+1, f(F | UFK) P0

N+1, k(D̂ 5 L | F 5 UFK). (4.7)

It is straightforward to prove an analog of Lemma 2.5 for S1, 2
N+1

2, 2m+
1
2
in

place of T1
N+1

2, 2m+
1
2
. Therefore mimicking the proof of Lemma 3.1, we

obtain

Pp, 2
LN+1, f(Fi, i+1 | U

FK) \
E14

(N−k)c29
e −(N−k) y(e1+e2). (4.8)

Then, analogously to (3.12), from (4.7),

mbLN+1, f(D
c 5 L | U Ising) \

E15

(N−k)c29
e −4(N−k) y(e1+e2). (4.9)

Next we have, using (2.3) and Lemma 2.2,

mbLN+1, f(D 5 L | U Ising)

[ Pp, 2
LN+1, f(xi, 2 Y

g xi+1, 1 in T i
N+1

2, k+3j+
3
2
for all i | UFK)

[ 28Pp, 2
LN, w(xi, 2 Y

g xi+1, 1 in T i
N+1

2, k+3j+
3
2
for all i)

[ 28Pp, 2(xi, 2 Yg xi+1, 1 in T i
N+1

2, k+3j+
3
2
for all i)

[ 2048e −8ky(e1). (4.10)

Since 2ky(e1) \ (N−k) y(e1+e2), (4.9) and (4.10) give

mbLN+1, f(D
c 5 L | U Ising)

mbLN+1, f(D 5 L | U Ising)
\

E15

8(N−k)c29
.

With (4.5) and (4.6), this shows

mbLN, gk, −1(D
c) \

E15

16(N−k)c29
,

which with (4.4) completes the proof of Theorem 1.1 for E=−1, as in
Section 3.
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The proof when 2ky(e1) < (N−k) y(e1+e2) is similar, with the roles of
D and D̂ interchanged, using squares S i, i+1

· , · in place of the triangles T i
· , · .

Turning to Theorem 1.2, Let us write m for mbL, g and m
− for mbL, gŒ. There

exists a constant M=M(b) such that for every s ¥ SL, we have
m −(s) [Mm(s). Therefore, for every nonnegative function g on SL,

OgPmŒ [MOgPm.

Hence for f ¥ L2(m −)=L2(m),

varmŒ(f)=O(f−OfPmŒ)2PmŒ [ O(f−OfPm)2PmŒ [M varm(f).

Interchanging the roles of m and m − we see that the corresponding Dirichlet
forms Dm and DmŒ satisfy

−DmŒ(f, f) \ −MDm(f, f).

With (1.1) this proves (i), and (ii) is a straightforward consequence of (i).
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